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Abstract A 1H NMR study that explored the ability of a-

cyclodextrin (a-CD) to preferentially bind (R)-a-lipoic acid

is presented. The interaction between a-CD and (R)-a-li-

poic acid was found to be stronger than that between a-CD

and (S)-a-lipoic acid. Structures for the (R)-a-lipoic acid/a-

CD and (S)-a-lipoic acid/a-CD inclusion complexes were

constructed using restraints derived from ROESY spectra

and MM2 molecular mechanics calculations. The models

built for both complexes have the 1,2-dithiolane ring and

the carboxyl moiety of a-lipoic acid oriented toward the

secondary and primary hydroxy sides of a-CD,

respectively.
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Introduction

(R)-a-Lipoic acid (Fig. 1a), a compound found naturally in

low amounts in food such as liver, spinach, and tomatoes, can

effectively prevent oxidative stress in vivo [1–3]. Its 1,2-

dithiolane ring is responsible for the antioxidant activity.

Light, heat and alkaline conditions inactivate it. Additionally,

it is poorly soluble in water [4]. Cyclodextrins (CDs) are

expected to increase the solubility and stability of (R)-a-lipoic

acid by forming (R)-a-lipoic acid/CD inclusion complexes,

suggesting that such complexes can be used as nutritional

(R)-a-lipoic acid supplements. CDs are cyclic oligosaccha-

rides, containing six (a-CD, Fig. 1c), seven (b-CD), or eight

(c-CD) D-glucopyranose units [5, 6]. In aqueous solution, CDs

can accommodate a variety of organic compounds in their

central cavities and are therefore widely used to protect sub-

strates from physical or chemical damage. Certain properties

of the (R)-a-lipoic acid/b-CD inclusion complex have been

determined, but its structure has not been characterized,

because its rotating frame nuclear Overhauser effect spec-

troscopy (ROESY) spectrum contained only a few NOEs as

(R)-a-lipoic acid was mobile in the b-CD cavity [7, 8]. a-CD

has a smaller cavity than doesb-CD, which suggests thata-CD

should be able to maintain (R)-a-lipoic acid in a fixed orien-

tation for structural determination. Although as noted above,

(R)-a-lipoic acid/CD inclusion complexes have been reported,

inclusion complexes with the non-natural enantiomer, (S)-a-

lipoic acid (Fig. 1b), have not been studied. Herein, we report

an NMR study of the a-CD inclusion complexes for (R)- and

(S)-a-lipoic acid, and show that a-CD preferentially binds

(R)-a-lipoic acid. Additionally, using restraints derived from

the corresponding ROESY spectra, we built energy-mini-

mized structures for the a-CD complexes with (R)- or

(S)-a-lipoic acid.

Materials and methods

Materials

a-Cyclodextrin (CAVAMAX W6 Food) and (R)- and (S)-a-

lipoic acid were supplied by Wacker chemical Co. and Toyo

hakko Co., Ltd., respectively. Deuterium oxide, with an

isotopic purity of 99.95%, was purchased from Merck Co.
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Sample preparation for NMR studies

Mixtuers of (R)- or (S)-a-lipoic acid (2 mM) and a-CD

(2 mM) were sonicated in D2O (1 mL) for 20 min and

insoluble materials were removed by filtration.

1H-NMR spectroscopy

One- and two-dimensional 1H-NMR spectra were recorded

at 25 �C using Bruker Avance 600 and Varian VXR-500S

spectrometers operating at 600.13 and 499.843 MHz,

respectively. All spectra were recorded using the manu-

facturer’s suggested pulse sequences and procedures. The
1H chemical shift of HDO (d = 4.70 ppm) served as the

internal standard. The rotating frame nuclear Overhauser

effect spectroscopy (ROESY) spectra were obtained with a

mixing time of 300 ms and 32 scans for each t1 increment

(256 in total). HDO was suppressed by selective irradiation

during the repetition delays.

The estimated structures of the a-lipoic acid/a-CD

complexes

To elucidate a plausible structure for the a-lipoic acid/a-CD

complexes, molecular mechanics calculations were per-

formed using ChemBio3D Ultra 12.0.3 (CambridgeSoft

Corporation, 2010) software with a modified Allinger’s

MM2 force field. Each a-lipoic acid enantiomer was

initially placed into the a-CD cavity with its 1,2-dithiolane

ring and carboxyl moiety oriented toward the secondary

and primary hydroxy faces of a-CD, respectively, and then

the energy of each structure was minimized. In addition,

several other initial (R)- and (S)-a-lipoic acid positions

were subjected to energy minimization, and, for all runs,

the final structures were nearly the same.

Results and discussion

Figure 2 shows the a-lipoic acid region of the 1H NMR

spectra of (R)-a-lipoic acid alone, (R)-a-lipoic acid in the

presence of a-CD, and (S)-a-lipoic acid in the presence of

a-CD in D2O. The H-b and H–d resonances in the spectrum

of (R)-a-lipoic acid in the presence of a-CD are shifted

upfield and downfield, respectively, compared with their

positions in the spectrum of (R)-a-lipoic acid alone, sug-

gesting that H-b and H-d interact with different parts of

a-CD, i.e., they are oriented on opposing sides of a-CD.

Additionally, in the presence of a-CD, the 1H resonances of

Fig. 1 Structures of a (R)-a-lipoic acid, b (S)-a-lipoic acid, and

c a-cyclodextrin

Fig. 2 a-Lipoic acid regions in the 1H NMR spectra of a (R)-a-lipoic

acid alone, b (R)-a-lipoic acid in the presence of a-CD, and c (S)-a-

lipoic acid in the presence of a-CD in D2O at 25 �C
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(R)-a-lipoic acid are shifted to a greater extent than are

those of (S)-a-lipoic acid, suggesting that the overall

interaction between a-CD and (R)-a-lipoic acid is stronger

than that between a-CD and (S)-a-lipoic acid. Notably, the

resonances for H-b of (R)-a-lipoic acid in the presence of

a-CD show a complicated splitting pattern, whereas those

of (S)-a-lipoic acid in the presence of a-CD and (R)-a-

lipoic acid alone present as simple triplets (Fig. 3). Addi-

tionally, splitting patterns of the other resonances for both

enantiomers in the presence of a-CD are nearly identical.

Because the H-b resonances are magnetically non-equiva-

lent in the (R)-a-lipoic acid/a-CD spectrum, a rotational

barrier around a C–C bond may exist, possibly caused by a

hydrogen bond between the carboxyl group of (R)-a-lipoic

acid and a hydroxy group of a-CD. The stereochemical

effect of the chiral C-f may cause the differences in the

position of the carboxyl group for enantiomers even though

the distance between the C-f and C-b carbons is far apart.

If each of the a-lipoic acid enantiomers is bound within

the a-CD cavity, NOE correlations between their protons

and those of a-CD (H-3, H-5, or H-6) would be observed,

and it would then be possible to orient each a-lipoic acid in

the a-CD cavity using the restraints derived from the

assigned NOE intensities [9, 10]. NOE correlations

between protons of each enantiomer and protons of a-CD

were observed in the corresponding ROESY spectrum.

Figures 4 shows the assigned ROESY spectrum with the

NOE correlations that connect protons of (R)-a-lipoic acid

with protons of a-CD diagrammed. The intensity of the

NOE correlation between the H–d of (R)-a-lipoic acid

and the H-3 of a-CD is larger than that between the H–d of

(R)-a-lipoic acid and the H-5 of a-CD. The intensity of the

NOE correlation between the H-b of (R)-a-lipoic acid and

the H-5 of a-CD is larger than that between the H-b of

(R)-a-lipoic acid and the H-3 of a-CD. The intensity of the

NOE correlation between the H-c of (R)-a-lipoic acid and

the H-3 of a-CD is similar to that between the H-c of (R)-a-

lipoic acid and the H-5 of a-CD. These results strongly

suggest that the 1,2-dithiolane ring and the carboxyl moiety

of (R)-a-lipoic acid are oriented toward the secondary and

Fig. 3 H-g0 and H-b resonances in the 1H NMR spectra of a (R)-a-

lipoic acid alone, b (R)-a-lipoic acid in the presence of a-CD, and

c (S)-a-lipoic acid in the presence of a-CD in D2O at 25 �C Fig. 4 ROESY spectrum of the (R)-a-lipoic acid/a-CD complex
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primary hydroxy sides of a-CD, respectively. A ROESY

spectrum of (S)-a-lipoic acid in the presence of a-CD was

also acquired (Fig. 5). The pattern of NOE correlations in

the (S)-a-lipoic acid/a-CD spectrum is similar to that in the

(R)-a-lipoic acid/a-CD spectrum but the NOE intensities

for former are weaker than those for the latter. In general,

NOE intensities depend on the distance between the

interacting groups, which for a noncovalent complex such

as a CD/guest inclusion complex, is partially dictated by

the binding strength of the complex. Therefore, the stron-

ger NOE intensities found in (R)-a-lipoic acid/a-CD

spectrum suggest, as did the larger CD-induced chemical

shift changes, that the (R)-a-lipoic acid/a-CD interaction is

stronger than the (S)-a-lipoic acid/a-CD interaction.

Structure for the two a-lipoic acid/a-CD inclusion com-

plexes based on the NOE constrains obtained from their

ROESY spectra were built using the MM2 molecular

mechanics module in ChemBio3D (Figs. 6, 7). For both

complexes, the 1,2-dithiolane rings are approximately per-

pendicular to the C6 axis of a-CD, which explains why no

NOE correlations were found for the protons of the 1,2-

dithiolane ring and the protons of a-CD. The total steric

energies for the (R)- and (S)-a-lipoic acid inclusion complexes

are 67.0 and 68.6 kcal/mol, respectively, indicating that the

former is the more stable complex in vacuo. The values for the

energies agree with the NMR data that suggested that (R)-a-

lipoic acid bound somewhat more tightly to a-CD.

Fig. 5 ROESY spectrum of the (S)-a-lipoic acid/a-CD complex

Fig. 6 Estimated structure of the (R)-a-lipoic acid/a-CD complex;

a side view, b view from the secondary hydroxy side
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Conclusions

The interaction of a-CD with the naturally occurring (R)-a-

lipoic acid is stronger than that with the non-naturally

occurring enantiomer, (S)-a-lipoic acid. Structures for the

two a-lipoic acid/a-CD inclusion complexes were built

using NOE-derived restraints and MM2 molecular

mechanics calculations. In both structures, the 1,2-dithio-

lane ring and the carboxyl moiety of the a-lipoic acid are

oriented toward the secondary and primary hydroxy sides

of a-CD, respectively.
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